
Analysis of two browser-specific characteristics,
from a performance perspective

Authors: Ragnar Lönn <ragnar@loadimpact.com> and Robin Gustafsson

<robin@loadimpact.com>

1. Background

Load Impact [1] is an online load testing service, dedicated to helping

people test and improve the performance of their web applications. Load

Impact has developed a Web Page Analyzer ("the Analyzer") [2] that

allows web developers to analyze how different web browsers perform

when they load a web page. To enable the Analyzer to emulate different

browsers, Load Impact has built on the work of the Browserscope

project [3]. Browserscope have identified a number of performance-

affecting characteristics that separate different web browsers, and these

characteristics are emulated by the Load Impact Analyzer in order for the

Analyzer to be able to simulate the behaviour of a real web browser in a

(from a performance perspective) realistic way.

As part of the further development of the Analyzer, Load Impact has

studied a couple of newly identified browser-specific characteristics, their

performance impact, and how to test them (how to test if a browser

exhibits a certain characteristic). This report aims to explain the findings

from the study.

2. Browser-specific characteristics studied

2.1. Support for HTTP trailing headers



Commonly, an HTTP transaction starts with a client making a request to

the server, asking for some resource (file/object). If the resource exists,

and the server is able to return it, the server will give the client a positive

response (HTTP return code 200), then send a number of HTTP headers

that contain metadata information about the object that is to be

transferred, such as what type of object it is (is it an image? a text file?),

how big it is (how many bytes), etc. When the HTTP headers have been

transferred, the actual object will be sent. This is called the "body" of the

HTTP message, the actual data that the client asked for.

However, in HTTP 1.1 [4] there is a new feature available when using the

chunked transfer-encoding [5], that allows a server to send extra HTTP

headers after the body of the message has been sent. This is to facilitate

sending of metadata information that might not be known at the time the

body is being transferred, or where the performance of the transaction

can be improved by delaying the sending of header data, allowing the

client to get the actual content it wants quicker. An example of where this

is useful is if you have a system that generates the response data

dynamically and then wants to include a checksum HTTP header, Content-

MD5 [6], that contains a checksum of the data sent. The server does not

know the checksum until the dynamic object has been fully generated, so

unless it can send the checksum header after the body of the message, it

has to generate all the data first, before sending a single byte. This can

mean a substantial delay for the user, if there is a lot of data to generate

and it takes a while, and it will also mean the server has to buffer all the

data locally before sending it, which can be memory-consuming and result

in significantly higher server costs to operate the service.

Not all browsers (quite few in fact) support HTTP trailing headers, which

means it is an interesting characteristic that differentiates browsers and

that can affect performance.



2.2. Ajax HTTP POST requests are sent as two or more TCP

packets

This is an obscure phenomenon that is most likely an unintended side

effect of how most modern web browsers are written. A browser capable

of executing Javascript [7] (most browsers) can generate HTTP requests

from within the Javascript code. This is what services like Google Gmail

[8] are built upon, it is the foundation of the Ajax technology [9].

The Javascript code can generate both GET and POST (almost any type of

HTTP request actually) requests and, in the case of GET requests, any

tiny request will always be sent over the network in a single TCP packet,

resulting in a data transfer that is optimally efficient. However, as it turns

out, most browsers will split an HTTP POST request into two separate TCP

packets, with one packet containing the HTTP headers, and one packet

containing the HTTP body. The browsers will only do this for HTTP POST

requests generated by Javascript, however. It is a quite obscure

phenomena, but nevertheless something that could have a performance

impact for many modern services that are Javascript-heavy.

A majority of browsers seem to exhibit this behaviour (sending Ajax HTTP

POST requests as two or more packets) [10] and [11]

3. Detecting the characteristics

3.1. How to detect if a browser has support for trailing HTTP

headers

To detect browser support for trailing headers we augmented the

Browserscope project with a new, network category, test. The test



consists of a single HTML [12] document with a Javascript resource

loaded by means of a <script> tag. The Javascript resource is generated

dynamically by a CGI script [13] on the server side and returned in a

chunk transfer-encoded [14] HTTP response with a Set-Cookie HTTP

header [15] set in the trailer.

It is necessary for the Javascript resource to be located on the same

domain, or a subdomain, as that of the HTML document for the cookie to

be treated as a first-party cookie and not be discarded as a third-party

cookie which is the default behavior in some browsers, notably Internet

Explorer without the use of a P3P [16] compact policy [17].

We attach a Javascript event handler to the window.onload [18],[19]

event to be notified once the document and all its referenced resources

have been fully loaded. Once notified, we dynamically add a new <script>

tag to the DOM [20] to load a second Javascript resource from the same

domain as the first Javascript resource. It is essential to load the two

Javascripts from the same domain to make sure the cookie is sent back in

the request for the second Javascript resource.

The second Javascript resource is dynamically generated server-side by

the same CGI script as the first Javascript resource, albeit with a different

query-string. This time the CGI script checks if the cookie is present in

the HTTP request headers. If the browser picked up the cookie sent in the

trailer of the HTTP response for the first Javascript resource it should send

the cookie back to the server in the request for the second Javascript

resource and thus manifest its support for sending headers in the trailer

of a chunk transfer-encoded HTTP response.

The code of the second Javascript resource calls a Javascript function

present in the document which inserts a text string into the document to



let the viewer know if the browser has support or not.

3.2. How to detect if a browser sends Ajax HTTP POST requests as

two or more TCP packets

To detect this behavior we constructed a simple HTML document with a

single button which upon being pressed generated an XHR

(XMLHTTPRequest) [21] POST request with a small amount of POST data.

Using Wireshark [22] we observed the TCP packets sent as a result of the

XHR POST request for a range of different browsers and operating

systems. Same technique as that used by Joseph Scott [11].

4. Current status for most common browsers

4.1. Testing methodology

All testing was performed with bare browser installations with no plugins

or extensions installed. Every test was performed at least 3 times, with a

cleared cache in between, to make sure the observed results were

accurate.

4.2. What browsers support trailing HTTP headers

These are the results from running the trailer test we developed for

Browserscope:

Windows XP

Browser Supports headers sent in trailer

Avant 11.7 No



Chrome 4.1.249.1045 No

Firefox 1.0.8 No

Firefox 3.6 No

Flock 2.5.6 No

Internet Explorer 5.5 No

Internet Explorer 6 No

Internet Explorer 7 No

Internet Explorer 8 No

Opera 9.20 Yes

Opera 10.10 Yes

Safari 3.1 No

SeaMonkey 2.0.3 No

Windows 7

Browser Supports headers sent in trailer

Internet Explorer 8 No

Firefox 2.0.0.20 No

Safari 4.0.5 No

Ubuntu Linux 9.10 Karmic Koala

Browser Supports headers sent in trailer

Chrome 5.0.356.0 beta No

Chrome 5.0.371.0 beta No

Epiphany 2.28.0 No

Firefox 2.0.0.14 No



Firefox 3.5.8 No

Galeon 2.0.7 No

Konqueror 4.3.2 No

Opera 10.01 Yes

4.3. What browsers send Ajax HTTP POST requests as two or more

TCP packets

These are the results from generating XHR POST requests and observing

TCP packets sent using Wireshark:

Windows XP

Browser
Sends XHR POST requests as 2 or

more packets

Avant 11.7 Yes, 2 packets

Chrome 2.0.172.43 Yes, 2 packets

Chrome 4.1.249.1045 Yes, 2 packets

Chrome 5.0.342.9 beta Yes, 2 packets

Firefox 1.0.8 No, 1 packet

Firefox 3.0.13 No, 1 packet

Firefox 3.5.2 No, 1 packet

Firefox 3.6.3 No, 1 packet

Flock 2.5.6 No, 1 packet

Internet Explorer 5.5 Yes, 2 packets

Internet Explorer 6 Yes, 2 packets

Internet Explorer 7 Yes, 2 packets



Internet Explorer 8 Yes, 2 packets

Opera 9.20 Yes, 2 packets

Opera 9.27 Yes, 2 packets

Opera 10.10 Yes, 2 packets

Safari 3.1 Yes, 2 packets

Safari 4.0.3 Yes, 2 packets

SeaMonkey 2.0.3 No, 1 packet

Windows 7

Browser
Sends XHR POST requests as 2 or

more packets

Internet Explorer 8 Yes, 2 packets

Firefox 2.0.0.20 Yes, 2 packets

Safari 4.0.5 Yes, 2 packets

Ubuntu Linux 9.10 Karmic Koala

Browser
Sends XHR POST requests as 2 or

more packets

Chrome 5.0.371.0 beta Yes, 2 packets

Epiphany 2.28.0 Yes, 2 packets

Firefox 2.0.0.14 Yes, 2 packets

Firefox 3.5.9 No, 1 packet

Galeon 2.0.7 No, 1 packet

Konqueror 4.3.2 Yes, 2 packets

Opera 10.01 Yes, 2 packets



MacOS X 10.5.8 (Intel)

Browser
Sends XHR POST requests as 2 or

more packets

Chrome 5.0.342.9 beta Yes, 2 packets

Firefox 3.6.3 No, 1 packet

Safari 4.0.5 Yes, 2 packets

It is interesting to note that Firefox 2 on the tested platforms deviates

from other versions of Firefox by sending 2 TCP packets. Konqueror also

deviated by sending all headers except one, Content-Length, in the first

TCP packet and then the Content-Length header along with the POST

body in the second TCP packet.

5. Performance implications

5.1. Performance implications of missing support for trailing HTTP

headers

5.1.1. Discussion

There are several use cases where it would be beneficial, from a

performance perspective, to send the HTTP response body as fast as

possible, deferring many of the HTTP headers to the trailer. Three such

use cases are:

• A system generating response data dynamically wanting to include

a Content-MD5 checksum header to enable integrity checking on

the client-side.



• A system using atleast one special purpose HTTP extension header,

where the time it takes to produce the header's value is significant,

but the client doesn't need the header information in order to start

processing the data.

• A system where client-side user experience is tightly coupled to

data arrival rate, think online collaboration tools and browser MMO

[23] games.

The lack of browser support for receiving headers sent in the trailer can

impact performance negatively on both client- and server-side. On the

server-side the negative effect may manifest itself in the excessive usage

of memory needed to buffer the entire response body in memory as

compared to the amount of memory needed if the response body would

be streamed. The client-side may suffer from higher user perceived

latency as the response body is kept longer on the server-side, headers

having to be sent first, before being sent off to the client.

To further illustrate the implication on the server-side we can imagine a

web application serving dynamically generated PDF [24] files to clients.

Along with each PDF comes an MD5 checksum set in the Content-MD5

header. Each generated PDF is roughly 10 MiB in size and the web

application needs to handle 1000 concurrent clients at peak load. Most

browsers do not support headers being sent in the trailer, with the

notable exception of the tested versions of Opera, thus the web

application has to buffer every PDF in memory, in its entirety, to allow the

MD5 checksum to be calculated and sent in the HTTP response headers

before the generated PDF can be sent as the HTTP response body. This

means that the web application, at peak load, would need roughly 10 GiB

of memory just for buffering. If the web application could instead send

the Content-MD5 header in the trailer the server would need a very small

amount of memory for buffering. The PDF would then be streamed to the

client while being generated and the MD5 checksum calculated in an



iterative fashion and sent as a header in the trailer, after the transmission

of the body.

5.2. Performance implications of sending Ajax HTTP POST

requests as two or more TCP packets

5.2.1. Discussion

Transmitting extra, unnecessary packets is always wasteful. Transmitting

two packets instead of one has several negative consequences:

• It increases network traffic as every packet sent carries an

overhead in the form of packet headers

• It doubles the risk of one packet getting lost in transit, which would

result in a retransmit after a timeout (using up more bandwidth

and delaying the whole transaction)

• It uses up more server and network router resources, as twice the

number of packets have to be handled by both endpoints and

network intermediaries

The primary question we wanted to answer was therefore not whether it

was worse to send two packets instead of one. The question was instead

how large the negative performance impact is, when you send two

packets. Is it insignificant, or would it make sense to "fix" the browsers

that send two packets, so they start sending one instead?

This is of course not an easy question to answer. The performance impact

of this browser behaviour depends a lot on what type of web service we

are looking at. One web service might use Ajax HTTP POST requests very

infrequently, or not at all, while another web service might have clients

that use them thousands of times per day. Note also that the biggest

difference you get, is when you have an application that sends a lot of



very small Ajax POST requests - small enough to fit in one TCP packet.

That means e.g. Safari users will send twice the amount of TCP packets

that Firefox users do. It would seem logical, that for a web service that

makes frequent use of such Ajax HTTP POST requests, and that has users

connecting via high-latency, high-packetloss links (such as satellite or

other long-distance connections), this behaviour could indeed have a

noticeable impact on performance, at least from the perspective of the

user.

5.2.2. Experiment

To test the possible performance impact of bad network conditions,

combined with Ajax HTTP POST requests being sent as two separate TCP

packets, we decided to create an experiment.

We set up an Apache [25] web server on a Linux [26] machine, and let it

deliver a page that contained a Javascript. Upon execution, the Javascript

performed 3000 HTTP POST requests in sequence, as fast as possible but

with a 200 ms sleep between each request, to the web server. The

transaction times for each transaction were computed by the Javascript,

and an average transaction time was calculated.

Note also that because the requests were made in quick succession, the

TCP connection between client and server tended to stay open during the

whole of each 3000-transaction session. That means there were only a

single TCP handshake/connection setup initially in each test run.

We ran this test first in Safari 4.0.5 - a browser that we know sends Ajax

HTTP POST requests as two separate TCP packets. Then we ran the test in

Firefox 3.6.3, which is one of few browsers that send the same type of

request as one single TCP packet. Then we ran the test in Safari again,

then in Firefox, and so on until we had a total of three runs for each



browser. The average transaction response times were recorded on all

occasions, and these were the results:

Run
Firefox average transaction

time (ms)

Safari average transaction

time (ms)

1 11 6

2 9 5

3 8 6

Average 9 6

As you can see, the average transaction time was actually lower in Safari,

which sends two TCP packets for each request. A likely cause is that the

Javascript engine in Safari is quite a bit faster than in Firefox [27], and as

we have practically no packet loss in the network, the time penalty for

sending two packets is likely to be insignificant. The network delay

(roundtrip delay) averaged approx. 1 ms, as measured by the ping [28]

utility at several points in time.



Then we used the ipfw [29] utility to simulate packet loss on the web

client ("ipfw pipe 1 config plr 0.1; ipfw pipe 2 config plr 0.1; ipfw add 1

pipe 1 ip from any to webserver-ip; ipfw add 2 pipe 2 ip from webserver-

ip to any). We set the packet loss rate to 20% (10% loss of incoming

packets and 10% loss of outgoing packets) and reran the tests using

Safari and Firefox (3 times 3000 requests for each browser). The results

were as follows:

Run
Firefox average transaction

time (ms)

Safari average transaction

time (ms)

1 92 57

2 95 55

3 91 57

Average 93 56

Notable here is that the transaction time for Firefox actually increased

more (approx. +84 ms) than the transaction time for Safari (approx. +50

ms). If we look at percentage increase, Firefox transaction time increased

by +930% and Safari's by +830%.

The average transaction time should be a function of the following basic

variables:

• Javascript execution time

• Server response time

• Network RTT (roundtrip time / delay)

• Packet loss

• Number of packets sent



Normally, when there is no packet loss, the time it takes to perform a

transaction should just be the javascript execution time, plus the network

RTT, plus the server response time. When there is packet loss, however,

extra delay is added for every lost packet.

When a packet is lost, the operating system's TCP implementation waits a

certain multiple of the network RTT [30] for an acknowledgement from

the remote host, before considering the packet lost and retransmitting it.

This means that every time we lose a packet we incur quite a big delay to

the transaction that is taking place. If a retransmitted packet should

happen to get lost, the delay will be exceptional as the TCP algorithm

increases the retransmission timeout (RTO) value exponentially each time

it has to resend the same packet.

To test how much of the extra delay was dependent on network delay

(RTT), we did another round of tests where we added an extra 200 ms of

network delay.

To establish a baseline, we first ran a test where we only simulated high

network delay, but no packet loss. We set network delay to 200 ms (100

ms in each direction). These were the results:

Run
Firefox average response time

(ms)

Safari average response time

(ms)

1 212 208

2 212 207

3 211 208

Average 212 208



Then we added the 20% packet loss emulation again (10% in each

direction, along with 100ms delay in each direction). Now we got these

results:

Run
Firefox average response time

(ms)

Safari average response time

(ms)

1 324 297

2 327 296

3 323 303

Average 325 299

This was unexpected. Safari, sending two TCP packets for each POST

operation, is still getting better transaction times than Firefox, which is

sending one TCP packet for each POST operation. We decided to see if

packet loss in one direction only made a difference, so we set the network

emulator to drop 20% of all packets going from client to server. We left

the delay settings the same as earlier, with 100 ms delay in each

direction.

Run
Firefox average response time

(ms)

Safari average response time

(ms)

1 320 271

2 316 273

3 309 290

Average 315 278



The result was that Safari was doing even better. So, we decided to make

a final test where the packet loss was 20% from server to client and

see what that would result in. Here are the figures:

Run
Firefox average response time

(ms)

Safari average response time

(ms)

1 359 365

2 362 347

3 355 342

Average 359 351

Here, finally, it seems that Safari might be starting to "catch up" with

Firefox, in a negative way. I.e. the adverse network conditions seem to be

affecting Safari about as badly as they do Firefox.

5.2.3. Conclusion

These results were a bit unexpected. We had expected Safari to do a lot

worse than Firefox in a packet-loss environment, as sending two packets

doubles the chances of a packet getting lost. The outcome, however, was

that packet loss seems to affect both browsers Ajax POST transactions

about the same, with Safari actually doing slightly better in most cases.

Only when packets are lost in the direction server->client does it seem

that both 1-packet and 2-packet HTTP transactions suffer equally. We are

going to investigate this a bit further, and see if it could be e.g. that in

the 2-packet case, the TCP implementation gets some advantages when

sending more TCP packets - it could help it maintain a better knowledge

of actual network roundtrip times, and it might benefit some from a lower



retransmit timeout (RTO) when the first packet in a POST transaction is

lost, but the second packet gets ACKed quickly by the receiver.

At any rate, the initial assumption - that sending more packets is always

bad - has proven wrong. Sending 10 packets might be worse than

sending 5 (though based on our current track record in making

predictions, we should probably not make such a guess either...), and

there is no doubt that bandwidth usage increases, but for transaction

performance when there is no bandwidth shortage, sending 2 packets

might actually be better than sending one.

Appendix I: References

[1] http://loadimpact.com

[2] http://loadimpact.com/pageanalyzer.php

[3] http://browserscope.org

[4] http://tools.ietf.org/html/rfc2068, http://tools.ietf.org/html/rfc2616

[5] http://tools.ietf.org/html/rfc2616.html#section-3.6.1

[6] http://tools.ietf.org/html/rfc1864.html

[7] http://en.wikipedia.org/wiki/JavaScript

[8] http://gmail.com/

[9] http://en.wikipedia.org/wiki/Ajax_(programming)

[10] http://developer.yahoo.com/performance/rules.html#ajax_get

[11] http://josephscott.org/archives/2009/08/xmlhttprequest-xhr-uses-

multiple-packets-for-http-post/

[12] http://en.wikipedia.org/wiki/HTML

[13] http://tools.ietf.org/html/rfc3875.html

[14] http://tools.ietf.org/html/rfc2616.html#section-3.6.1

[15] http://tools.ietf.org/html/rfc2109

[16] http://www.w3.org/TR/P3P/

http://en.wikipedia.org/wiki/JavaScript
http://gmail.com/


[17] http://support.microsoft.com/?scid=kb;en-us;260971

[18] http://www.w3.org/TR/REC-html40/interact/scripts.html#h-18.2.3

[19] http://www.w3.org/TR/Window/

[20] http://www.w3.org/DOM/

[21] http://www.w3.org/TR/XMLHttpRequest/

[22] http://www.wireshark.org/

[23] http://en.wikipedia.org/wiki/Massively_multiplayer_online_game

[24] http://en.wikipedia.org/wiki/Pdf

[25] http://httpd.apache.org/

[26] http://www.linux.org/

[27] http://blog.blenderheadstudios.com/web-design/comparing-browser-

javascript-execution-speed/

[28] http://en.wikipedia.org/wiki/Ping

[29] http://en.wikipedia.org/wiki/Ipfirewall

[30] http://www.rfc-editor.org/rfc/rfc2988.txt

http://en.wikipedia.org/wiki/Massively_multiplayer_online_game
http://en.wikipedia.org/wiki/Pdf
http://blog.blenderheadstudios.com/web-design/comparing-browser-javascript-execution-speed/
http://blog.blenderheadstudios.com/web-design/comparing-browser-javascript-execution-speed/
http://blog.blenderheadstudios.com/web-design/comparing-browser-javascript-execution-speed/
http://en.wikipedia.org/wiki/Ipfirewall
http://www.rfc-editor.org/rfc/rfc2988.txt

